
Let’s talk about
Graph Data models
and why they are
relevant for your
Data and IT Strategy

Issued Date
August 2022

AUTHOR

Harsh Thakker, PhD.

www.osthus.com

office@osthus.com

+49 241 94313 0 © greenbutterfly– stock.adobe.com

https://www.linkedin.com/in/thakkarharsh/

Graph Data Models 04

05

06

08

08

09

10

12

The RDF Data Model

The Property Graph Data Model

Semantics: Capturing the Meaning of Data

Ontology and RDF Schema

PG Schema

Key Differences between RDF and PG

Why should you adopt a RDF/PG-
based Approach vs Relational Data
Model?Ta

b
le

 o
f

C
o

n
te

n
t Objective

But let me be a bit more precise: The objective of this white paper is to familiarize the readers
with the graph data model and its advantages; specifically the Resource Description Framework
(RDF) and Property graphs (PG) models which are the two most popular graph-data modeling
approaches amongst the commercial and open-source community. In doing so, we introduce
and illustrate the concepts of Resource Description Framework (RDF), Property graphs (PG),
Ontology, Semantics, and other relevant terminology.

We conclude this article by presenting a selected list of use cases/scenarios where adopting a
graph-data model (compared to OR in conjunction with an existing relational database setup)
will open doors to reaping several application specific design and performance benefits.

To all graph enthusiasts, researchers, students and professionals out
there, who would love to learn more about Graph Data models:
This whitepaper is for you.

Feel free to use it as a reference for your own papers, as training mate-
rial or use cases – We hope the content serves you well!

© kamiphoto – stock.adobe.com

So let’s dive in.
Graph Data Models – Real
world fact capturing at its best

This evolution began with machine assembly languages, progressed to procedur-
al programming, object-oriented methods, and resulted in the increasingly loose
coupling of data and code with relational databases, declarative query languages,
and object-relational mapping (ORM). In recent years, another step in this evolu-
tion has been observed: graph-based data models that organize information into
conceptual networks. When choosing formalisms for modeling real-world sce-
narios such as biological, transportation, communication, and social networks,
graphs are particularly popular because of their intuitive data model.

Resource Description Framework (RDF) and Property Graph (PG) data models
are two most popular approaches for data management that are based on mod-
eling, storing, and querying graph-like data. Several database systems/vendors
based on these models are gaining relevance in the industry due to their use in
several domains where graphs and network analytics are required. Below is the
landscape of large-scale adoption of graph-based data models by a variety of
public and private organizations as consolidated by Frank Van Harmelen in 2019.

Looking at the evolution of information technology, one can
observe a trend from data models and knowledge representa-
tion techniques that are tightly coupled to the capabilities of
the underlying hardware to more intuitive and natural methods
that resemble human-style information processing.

The RDF data model is a well-known W3C standard, which is used for data modeling and
encoding machine-readable content on the Web and within intranets. Using RDF one can
capture real-world facts (data, e.g. Elon Musk is the CEO of Tesla Inc.) and annotate statements
about those facts (so called meta-data, e.g. Elon Musk is CEO of Tesla Inc. since 2008). These
facts are represented in RDF as RDF triples. An RDF triple is a tuple (s, p, o) where s is called the
subject, p is the predicate, and o is the object. Here, the subject and object can be interpreted
as entities (nodes) and the predicate represents the relationship between them (edge). An
example of RDF triples is shown on the right capturing the relationship between Elon Musk and
Tesla Inc. in turtle format:

We use green color to represent the relationships in RDF (i.e. edges and
property keys in PG) and blue color to represent classes (and nodes in PG).
The literals (or property values in the PG) are represented in black color.

The figure below shows a graphical representation of an RDF graph of the data on the right.

The RDF Data Model –
Real world facts put in a data model

@prefix dbr: <http://dbpedia.org/resource/>.
@prefix dbo: <http://dbpedia.org/ontology/>.
@prefix dbp: <http://dbpedia.org/property/>.
dbr:Elon_Musk dbp:ceo dbr:Tesla_Inc .
dbr:Elon_Musk dbp:birthDate “1971-06-28” .
dbr:Elon_Musk dbp:birthName “Elon Reeve Musk” .
dbr:Tesla_Inc rdf:type dbo:Organisation .
dbr:Tesla_Inc dbp:name “Tesla Incorporation“ .
dbr:Tesla_Inc dbp:date “2003-07-01“ .

i

https://pt.slideshare.net/Frank.van.Harmelen/adoption-of-knowledge-graphs-late-2019
https://www.w3.org/

A Property Graph (PG) is defined as a labeled directed multigraph whose main characteristic is that nodes and edges can contain a set (possibly
empty) of name-value pairs referred to as properties.

From the point of view of data modeling, each node represents an entity, each edge represents a relationship (between two entities), and each
property represents a specific characteristic (of an entity or a relationship). An example of a Property Graph (data), corresponding to the RDF
example above, in GraphML format is shown on the next page.

The figure below presents a graphical
representation of a Property Graph
corresponding to the Elon Musk
example. The circles represent nodes,
the arrows represent edges, and the
boxes contain the properties (key-value
pairs) for nodes and edges.

The Property Graph Data Model <?xml version=”1.0” encoding=”UTF-8”?>
<graphml xmlns=”http://graphml.graphdrawing.org/xmlns” xmlns:xsi=”http://www.w3.org/2001/
XMLSchema-instance” xsi:schemaLocation=”http://graphml.graphdrawing.org/xmlns
http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd”>
<key id=”a0” for=”node” attr.name=”label” attr.type=”string”/>
<key id=”a1” for=”node” attr.name=”name” attr.type=”string”/>
<key id=”a2” for=”node” attr.name=”birthDate” attr.type=”Date”/>
<key id=”a3” for=”node” attr.name=”age” attr.type=”int”/>
<key id=”a4” for=”node” attr.name=”birthPlace” attr.type=”string”/>
<key id=”a5” for=”node” attr.name=”founded” attr.type=”string”/>
<key id=”a6” for=”node” attr.name=”hq” attr.type=”string”/>
<key id=”a7” for=”node” attr.name=”employees” attr.type=”int”/>
<key id=”a8” for=”edge” attr.name=”label” attr.type=”string”/>
<key id=”a9” for=”edge” attr.name=”since” attr.type=”int”/>
<graph id=”G” edgedefault=”directed”>
<node id=”n0”>
<data key=”a0”>Person</data>
<data key=”a1”>Elon Reeve Musk</data>
<data key=”a2”>1971-06-28</data>
<data key=”a3”>46</data>
<data key=”a4”>South Africa</data>
</node>
<node id=”n1”>
<data key=”a0”>Organisation</data>
<data key=”a1”>Tesla, Incorporation</data>
<data key=”a5”>2003-07-01</data>

© Funtap – stock.adobe.com

Semantics

●Introduces a vocabulary that is relevant
to the domain

●Specifies an intended meaning of the vocabulary
(semantics) of the vocabulary

Consists of two parts

i.e often includes names of classes and relationships

Formalized using a suitable logic, e.g. OWL (Web Ontology Language)
formalized using description logic

1. Set of axioms describing the structure of the model (using e.g. RDF Schema)
2. Set of facts describing a particular concrete situation (e.g. Elon Musk is a Person)

(Web) Semantics is the study of the meaning of concepts and their representation,
through which one can add context to statements about entities.

In the context of property graphs, there isn’t a notion of
schema in practice, as is in the case of RDF and rela-
tional databases. Although, there exist some systems
that use the notions of node types and edge types. As
with RDF databases, the schema allows us to define and
validate the structure of a property graph.
The notion of a schema in PG is best illustrated by the
following figure.

An Ontology, is a model that captures an aspect (including meaning of things) of the
real world. Ian Horrocks defines it as follows -- An ontology:

Capturing the meaning of data

PG Schema

Ontology and RDF Schema

From a database perspective, RDF Schema allows us to define the structure of
the data in an RDF graph, i.e., a schema for RDF data. The figure below shows the
schema of the running example capturing the relationship between Elon Musk
and Tesla Inc. resemble human-style information processing.

RDF Schema (RDFS) defines a standard data modeling vocabulary
(i.e., a set of terms, each having a well-defined meaning), which
enables the description of resource classes and property classes.

© phochi – stock.adobe.com

http://www.cs.ox.ac.uk/people/ian.horrocks/Seminars/download/onto-db.ppt

The Key Differences between
RDF and PG Data Models
Despite both RDF and PG being graph-based data models, there are some key differences between
the two. Some of these are at the fundamental level and others at the vendor implementation level:

• In RDF, it’s not possible to uniquely identify instances of a relationship. Meaning
that, it’s not possible to have connections of the same type between the same
pair of nodes because that would represent exactly the same triple, with no extra
information.e.g. You cannot have the triple with predicate “eats” (Elon eats ice_
cream) three times in RDF (as it is essentially the same triple); whereas in PG it is
possible to have the same type of edge three times between the same pair of nodes.

• This makes a huge difference while answering a question like “How many times
does Elon eat ice cream?”; Using SPARQL COUNT() you will get 1; whereas using
count() function in a language like Gremlin or Cypher you get the answer 32.

• Unlike RDF there is no standard data format for encoding PGs (GraphML,
GRYO, YARS-PG, GML, etc.). This presents a serious challenge for supporting
interoperability between several graph systems.

• Most RDF serializations are triple-centric, while most PG serializations
represent graphs as lists of nodes and edges

• RDF can have multivalued properties and the labeled property graph can have
arrays.
• In RDF you can have multiple triples with the same subject and predicate

and different objects. In PG, this is equivalent to using arrays (the same
key having multiple values) • The RDF data model allows metadata about properties, i.e. it allows for

edges between edges (a predicate can be the subject in another triple).
Although it must be noted that this feature is not common in real-world
use cases. A PG does not allow edges between edges. However, graph
data serializations such as .gryo (used by Apache Tinkerpop) allow
supporting of multi-level metadata by supporting meta-properties.
This allows one to annotate – for instance provenance data, about a
particular fact expressed by a property. In the example below, we can
see that the birth date information about Elon Musk is sourced from the
corresponding Wikipedia page about him.

2 Please note there is a caveat around this in RDF by introducing meta-data using reification, which allows you to capture the information about the eating counts. The idea here is to demonstrate that it isn’t supported
without using additional triples.

RDF doesn’t allow unique identification of relationship instances
of the same type

https://tinkerpop.apache.org/

Why should you adopt a RDF/PG-based
Approach vs Relational Data Model?

If your business problem or use case requires that the data schema
evolves with the maturity of the application and it’s requirements (over
time). Unlike relational databases which demand that the schema exists
upfront and the data has to be consistent (or satisfy) the schema con-
straints, Graph data models offer a very flexible notion of schema.

Unlike the execution of SQL over relational databases, graph query lan-
guages such as Gremlin or Cypher do not have to perform a large number
of “joins” in order to evaluate a complex query. Thus, if your business prob-
lem or use case envisions queries of analytical nature (analytical opera-
tors) over a large number of different classes (nodes or entities), adopt-
ing a PG-based data model would be your best bet. Consider building a
recommendation engine for finding the nearest match for a chemical or
biological compound across your vast data landscape. Graph traversals
are order(s) of magnitude faster than a traditional relational data model
(and SQL) approach.

If your business problem or use case is building an application based on
machine learning, natural language processing (or targeting any other ar-
tificial intelligence-related problem), such as chatbots, open-or-closed do-
main question answering systems, or NLP-based systems, check out the
current state of the art in graph data-based machine learning solutions.
Both RDF and PG databases are catering to these needs providing native
support for building modular pipelines using a custom implementation of
various AI, ML, NLP libraries, and plugins.

If you would like to design and develop an overarching central data
layer (or knowledge management) for your enterprise in order to allow
a 360-degree holistic view of your data and business assets, you might
want to consider the deployment of an enterprise knowledge graph. Us-
ing standardized vocabularies/taxonomies/ontologies one can create a
multi-layered data architecture for enabling integrated global data govern-
ance, data insight, and business intelligence ecosystem.

If the goal of your business problem or use case is to adopt, enforce and
adhere to the FAIR data principles - making your data and data assets
Findable, Accessible, Interoperable, and Reusable;

You might want to consider leveraging the RDF technology stack along with
your existing data warehouse/lakehouse/etc. infrastructure. RDF, SPARQL,
and OWL being W3C standards are widely adopted by commercial vendors
and cloud-solution providers. Furthermore, the whole vision behind semantic
web (RDF, SPARQL, OWL, etc. technology stack) is to uniquely identify and
describe resources on the web. This design feature allows eliminating redun-
dancy in the naming, identification, accessibility, and reusability of existing re-
sources. Web Ontologies provide a standardized and concrete framework to
classify, associate, and describe concepts and terminologies in both closed-
and open domains. For e.g., the popular and publicly available Chemical Enti-
ties of Biological Interest (ChEBI) ontology, can be used to identify and asso-
ciate chemical compounds in a chem- or bio-informatics use case.

For the sake of Schema Flexibility
and Metadata Management

If you like high performance in your
complex analytical Queries

Build and leverage the power of
AI/ML/NLP based Applications

You are looking for a 360-degree
holistic view of your data and business
assets, aka a Centralized Knowledge/
Data Management Layer

To ensure FAIR Data Principles, Data,
and Terminology Standardization

https://www.osthus.com/osthus-glossary/fair/

To summarize, the adoption of a graph data model based approach is of paramount importance, both performance
and modeling flexibility wise, if the goal of the use case/application is to provide a standardized means of data
production, consumption, governance, and lineage. It goes without saying that graph databases, be it RDF
triplestores or PG databases, are not a silver bullet for addressing all data and IT strategy challenges. For instance,
while graph databases provide native support for high performance graph computation, discovery and lineage style
queries (highly relevant for data cataloguing, governance, standardization/stewardship, adopting FAIR principles),
they still do lack a tried and tested commercial support for ACID properties (critical for transactional systems/use
cases)3.

They should not be looked as a one-stop replacement for existing data warehouses, data lakes, data marts, etc.;
instead they should be looked at as an natural extension layer in for supporting analytical and machine learning
based use cases/applications on top of the existing data & IT infrastructure.

Summary

3 Neo4J does support transactional capabilities to the best out understanding, but here we refer to the broader spectrum of graph vendors covering both RDF and PG data models.
4 We obviously do not recommend that you chop down trees! It is to make a point here ;-)

To put it in a simpler language – one should use a sharpened knife to chop
vegetables, fruits, etc. and a top-notch axe to chop down trees4. Using a
combination of both tools gives your organization a wider set of possibilities
and competence to exploit. Therefore, when driving organizational data
and IT strategy one should consider the entire toolkit and leverage the best
available tool to tackle a particular use case based on its merits.

If you are interested in learn-
ing more about the RDF and PG
data models, their real-world use
cases (who uses them and for
what?), and a variety of cloud-
based solutions you can use to
address your complex data-driv-
en business needs, stay tuned to
check out our upcoming second
white paper on this topic.

www.osthus.com

+49 241 94314 0 Eisenbahnweg 9-11,
52068 Aachen

Get In Touch

office@osthus.com

© Vincent– stock.adobe.com

https://www.linkedin.com/company/osthus/mycompany/verification/?viewAsMember=true
https://twitter.com/OSTHUS
https://www.youtube.com/user/OsthusCompany

